Finite Element Method for FAD mechanics

April 24, 2012

Authors: D.PRIOUR (IFREMER)

Problem and objective

Problem Objective Method FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Data

Cable input Environment input

Examples

Fishing gear Fish cage FAD behaviour

Discussion

• 3 >

-

Problem Objective

Problem

Mechanical behaviour of complex flexible marine structures

www.pewenvironment.org

回 と く ヨ と く ヨ と

Problem and objective

Method Data Examples Discussion

Problem Objective

Objective

Shape of the FAD, Displacement in wave.

Cable tension.

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Finite Element Method

FEM modelling for complex structures used for the mechanical behaviour.

Principle:

- Split the structure in small elements,
- Approximation in these small elements,
- Re-build the structure.

<回と < 目と < 目と

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

A simple example: Circle perimeter

- Perimeter is $2\pi R$
- Perimeter split in n arc length
- Arc length approximated by cord length
- Cord length $2Rsin(\frac{\alpha}{2})$
- Perimeter n times arc length

イロト イヨト イヨト イヨト

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Circle perimeter

R = 0.5Perimeter $= \pi$

More of bars elements, better the accuracy.

Perimeter vs elements number

- 4 回 2 - 4 回 2 - 4 回 2

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Equation of the mechanics

Equilibrium of forces leads to position

•
$$\mathbf{f} - \mathbf{m}\gamma = \mathbf{0}$$

- nodes are extremities of elements
- Equilibrium : F(X) = 0
- But $F(X_{init}) \neq 0$

・ロト ・回ト ・ヨト ・ヨト

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Vector of position and force

- Vector of position X
- Vector of force F depends on X
- How to find X_{final} such that $F(X_{final}) = 0$?

イロト イポト イヨト イヨト

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 1DOF

- Stiffness not constant
- ▶ What is the length (x) at equilibrium?
- Equilibrium: F(x) = 0

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 1DOF

 $x_{k+1} = x_k + \frac{F(x_k)}{-F'(x_k)}$ $F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$

Finite Element Method for FAD mechanics

・ロン ・回と ・ヨン・

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 1DOF

Convergence is quick

イロト イヨト イヨト イヨト

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 2DOF

・ロト ・回ト ・ヨト ・ヨト

Э

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 2DOF

$$\begin{aligned} \mathbf{X}_{k} &= \begin{cases} x_{k} \\ y_{k} \end{cases} \\ \mathbf{F}(\mathbf{X}_{k}) &= \begin{cases} F_{x}(\mathbf{X}_{k}) \\ F_{y}(\mathbf{X}_{k}) \end{cases} \\ F'(\mathbf{X}_{k}) &= \frac{A}{l_{0}l_{k}} \begin{cases} l_{k}^{2} - l_{0}l_{k} + y_{k}^{2} & x_{k}y_{k} \\ x_{k}y_{k} & l_{k}^{2} - l_{0}l_{k} + y_{k}^{2} \end{cases} \\ \mathbf{X}_{k+1} &= \mathbf{X}_{k} + \frac{\mathbf{F}(\mathbf{X}_{k})}{-F'(\mathbf{X}_{k})} \end{aligned}$$

Finite Element Method for FAD mechanics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Spring with 2DOF

Force norme

・ロン ・回と ・ヨン ・ヨン

Э

Force residue vs iterations

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Adaptation to FAD

Cables split in bar element

- Bar elastic
- Bar straight
- Length
- Diameter ...

Floats approximated by parallelepiped

- Mass
- Volume ...

・ロン ・回と ・ヨン・

FEM Equation of the mechanics Newton Raphson method Adaptation to FAD

Forces F depend on node position X

- Tension
- Weight
- Floatability
- Drag
- Dynamic
- Bottom contact

- $T_e = \frac{I I_0}{I_0} AE$
- $W_e = Mg$
- $F_l = V \rho g$

•
$$D_r = \frac{1}{2}\rho C dSV^2$$

•
$$I_n = -M\gamma$$

• $B_o = (Z_b - Z)K_b$

・ロン ・回 と ・ ヨ と ・ ヨ と

3

$$\mathbf{F} = T_e + W_e + F_I + D_r + I_n + B_c$$

Cable input Environment input

Cable input

number of cables	:14
cable	:1
extremities no x y z type	:
1 0 0 -1500 1	
2 20 0 -1500 2	
traction stiffness (N)	:3923000
compression stiffness (N)	:0
length (m)	:20
density (kg/m3)	:1050
diameter (m)	:0.044
cd	:1.2
f	:0.08
element number	:3
node type	:2

Finite Element Method for FAD mechanics

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Cable input Environment input

Environment input

wave period (s)

wave height (m)

Fishing gear Fish cage FAD behaviour

Trawl

Bottom trawl: Netting, cables, floats, doors.

Fishing gear Fish cage FAD behaviour

Fish cage

Circular cage moored with 3 chains: Netting, cables, floats, chains.

・ロト ・日本 ・モート ・モート

æ

Fishing gear Fish cage FAD behaviour

FAD behaviour

Mechanical behaviour of the FAD in waves

Finite Element Method for FAD mechanics

- Few current levels vs one level
- Large wave spectra vs Airy wave
- Accuracy: bar length (1m, 10m)
- Accuracy: time step (0.01s, 0.1s)
- ▶ Drag coefficient (1.2, 1.8) : flume tank tests
- Complex structures (plastic sheets) : flume tank tests
- Cable flexion

Thank you for your attention

Finite Element Method for FAD mechanics

||◆ 聞 > ||◆ 臣 > ||◆ 臣 >